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Abstract-This paper deals with transient wave propagation in elastic homogeneous and isotropic plates, in
terms of displacement discontinuities of all order 2: 1 at the wave front. The problem of steady state time
harmonic waves is dealt with in terms of an asymptotic series expansion. The possible wave types along
with the general transport-induction equations for each type are given, and the interrelationship between
transient and time harmonic waves is discussed. Special constrained wave motions which allow uncoupling
of the various possible wave types are defined. Several illustrative examples of the theory developed are
given.

INTRODUCTION

In a recent paper Cohen[l] has treated the problem of wave propagation within the framework
of the linear theory of homogeneous isotropic elastic plates. In that paper the problems of
shock and acceleration waves were treated for arbitrarily shaped waves. Consideration was
restricted to finding only the value of the disturbance at the wave front, or in other words to
finding what is termed the geometric acoustics solution. In addition, the problem of steady state
harmonic plane waves was also dealt with.

The aim of the present paper is three-fold. First, we wish to extend the geometric acoustics
analysis so as to find values of the disturbance not only at the wave front but in a region behind
it. This involves finding discontinuities of all order ~ I at the wave front and representing the
transient solution in terms of a series expansion behind the wave front. Such expansions are
suggested in the monographs of Friedlander[2] and Achenbach[3]. Secondly, we desire to find
steady state harmonic waves of a type more general than plane waves. Here, we employ the
asymptotic series utilized by Karal and Keller [4], who dealt with such waves in three­
dimensional linear elastic continua. Moreover, we wish to establish the one to one cor­
respondence between transient and time harmonic waves in plates, a result analogous to that
obtained by Kline and Kay[5] for the electromagnetic field equations. Finally, we desire to
illustrate the results of these analyses, by applying them to problems of a specific nature.

I. THE PLATE EQUATIONS

We consider the propagation of waves in linear, isotropic and homogeneous elastic plates.
The plate equations that we utilize are those of Iinearised Cosserat plate theory as developed by
Naghdi[6]. These equations developed from a direct two-dimensional approach are based on a
director model and are equivalent to those developed from three-dimensional considerations,
and include the effects of transverse shear deformation, transverse normal stress and strain and
rotatory inertia. The displacement equations of motion separate into two sets governing the
extensional and bending motions, respectively [I]. These are

f.L V2u + (A + f.L)V(V . u) + AV83 + ph-IF = ph-Iii,

asV
283

- (A + 2f.L)hJ)3 - A(V . u)h + pL3= paS3,

for the extensional theory, and

(1.1)

(1.2)

f.L V2S+ f.L(3A + 2f.L)(A + 2f.L)-IV(V . S) - {a3(S + Vu3
) + pL}/ha = ph-18, (1.3)

a3(V' S + V2
U

3
) + pp3 = pil3, (1.4)

for the bending theory.
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In the above equations u, u3 and Ii, ~3 denote the displacements of the Cosserat plane and of
the director, respectively. The vectors u, Ii represent the displacements parallel to the plane of
the plate, while u3

, ~3 represent displacements normal to the plate. For convenience we define
WI = (u, ~3), W2 = (Ii, U3), so that WI and W2 are displacement vectors associated with extensional
and bending motions, respectively. V is the two-dimensional gradient operator in the plane of
the plate. Also A, p. are Lame's constants, F, p3 are body forces, L, C are body couples,
a = h2/12 and a3, as are constant constitutive coefficients. The mass per unit area is p while h is
the plate thickness.

2. TRANSIENT WAVES AND DISCONTINUITIES

Consider a source of disturbance acting over some curve in a homogeneous isotropic elastic
plate.t If the source begins to act at time t = 0, then for t > 0 this disturbance will spread into
the plate with a constant wave front velocity G. The wave front will constitute a family of
parallel curves l/!(x, y) = Gt in the x, y plane of the plate while sweeping out a hypercone
q,(x, y, t) = 0 in space-time. The value of the field at a point Po(xo, Yo, to) on the wave front is
called the geometrical acoustic field by analogy to the geometrical optics situation arising in [5].
The value of this field at any point P(xo, Yo, t), t > to, behind the wave front will constitute the
so-called transient solution to the disturbance problem.

We assume a transient solution to eqns (l.lHI.4) in the form of a Taylor's series
expansion[2,3] at the wavefront into the region behind it. Thus we write

(2.1)

where (,) = 0 if the argument is negative while [ ] indicates the discontinuity or jump of the
argument across the wave front. These discontinuities occur at the wave front since the region
ahead of the wave is undisturbed. The wave is thus naturally a carrier of discontinuities. The
iowest order derivative of Wa having a discontinuity defines the order of the wave. A first order
wave is called a shock or strain wave and waves of this type will constitute the subject matter
dealt with herein. Higher order waves yield results which are completely analogous to those for
first order waves. For first order waves, a knowledge of the first order discontinuities on the
wave front will constitute the geometric acoustics solution, while a knowledge of the higher
order discontinuities will allow calculation of the transient solution from eqn (2.1).

Associated with the geometry of the wave front at any point are its unit tangent A and unit
normal v. We shall employ the notation wa

A = Wa • A and wa " =W a • v. Moreover, we use I and s
to denote arc lengths along the wave curves and rays, respectively, with the corresponding
directional derivatives defined by d/dl = A. V and d/ds = v . V. In order to deal with dis­
continuities we shall utilize the compatibility equations

n~O, (2.2)

where Wa•n = iJnwaliJtn and DlDt denotes time differentiation as seen by an observer moving
with the wave.*

We calculate the (n - l)st order derivative, n ~ I, of the equations of motion (l.lHI.4) and
take the jump of the resulting equations. On eliminating explicit dependence on t through the
equation t = ""G and assuming Coo body forces and couples, we find after considerable
manipulation that

(p. - G2ph-l )an +1 +(A + p.){v(v . an+l - GV . an) - GV(v . an - GV . an-I)}

+ P.G{Kan-2v' Van + GV2an_I}- AG{va/- GVa~_I}=0, (2.3)

tThe results to follow are readily generalized to nonhomogeneous plates. The general features of the analysis are
analogous to those presented here. The complication appears' as an algebraic one, due to the fact that the speed of
propaption is no longer constant.

*We refer the reader to Thomas [7] for a general discussion of compatibility relations and waves.
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(as - G2pa)a~+1 + asG{Kan
3- 2,,· Va/ + GV2a~_I}+ AhG{" . an - GV . an-I}- (A + 21£)G2a~_1

=0, (2.4)

2 h-I (3A +2#1.)1£ { ( V GV V}(1£ - G p )bn+1 + (A + 21£) "" . bn+1 - G . bn) - (" . bn- G . bn- I)

+ I£G{Kbn- 2" Vbn+ GV2bn_tl+ a3G(harl{"bn3 - G(bn- I+ Vb~_I)} = 0, (2.5)

(a3 - G2p)b~+1 + a3G{Kbn3 - " . (2Vbn
3 + bn) + G(V . bn- I+ V2b~_I)} = 0, (2.6)

where K= - V2t/J is the curvature of the wave front and we have set

an = [o.n], (2.7)

Equations (2.3H2.6) hold for n~ 1 as a consequence of eqns (1.1HI.4) and also for the case
n =°as a consequence of the form of eqns (1.1HI.4) at the curve of discontinuity. This latter
case is fully treated in [1].

If we take the scalar product of· the vector equations (2.3) and (2.5) with A and ", then the
set of equations (2.3H2.6) yield the following classification of shock waves, along with their
transport-induction equations governing jumps of all order, n~ 1.

(i) Longitudinal wave

aIP;a!O, al"=aI3 =O, GL2=(A+21£)h!P.

8an
P

1 {dan" G d V 2 ( 3 G da~_I)} G 2G -I V2
8'S=-2(1-p) di- Lds 'an-I+ P an - L(iS + T L ". an_I>

a~+1 = -(1-2P)GL{~;" - GLA' V2an_l}+ GL:
I
{GdV, an_I +2pa~_I)- a/},

(2.8)

(2.9)

(ii) Shear wave
(2.10)

al";a!O, aIP=aI3 =0, Gl=l£hlp.

8;;" = - (1 ~2p) :1 {an
P

- GTV' an-I}- GT{2pQ~-1+ A . V2an_I}, (2.11)

a~+1 = GTe:{ +2(1- p) ~;P -(1-2p)GT,,' V2an_1 +2p(a/ - GTd~~_I) - GT:s V· an-I}'

(2.12)

(2.13)

(iii) Squeeze-gradient wave

al =0, Gl= aalpa.

(2.14)

(2.15)
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" - (0 2 0 2)-10 {O 2(8an" 0 2 ) 1 d [ 2 •an+l- T- SST &- sA,Van-1 +2(l-II)dl Odan -OsV'an-t)

(2.16)

(iv) Bending wave

bl·~ 0, bl" = bl
3 = 0, oi = 4p.(A +p.)hl(A +2p.)p.

8bn• = _ (1 + II) {dbn" _ 0 .!V. b } + 0 -I{O 2 . V2b _ -10 2
8s 2 dl B ds n-I B T" n-I a K

(b • 0 -'b 3 db~_I)}X n-I + B n +----ciS '

b" - (1 0 210 2)-1{0 2[0 -I jjbn" V2 (1 + II) d -'b • )]n+1 - - - T B T, &- A· bn- I + (1- II) dl (OB n -V· bn- I

-10 2(b" db~_I)}+a K n-I+""T '

(v) Twisting wave

b,"~ 0, bt" = b? = 0, ol = p.hlp.

8bn" _ (1 + II) d {b. 0 Vb} 0 V2 -10 20 -I{b" db~_I}&--(1-II)dl n - B • n-I + TA' bn-I-a K T n-I+""T'

b:+ 1 = (Oi- Ol)-'OT{ oi 8;;· +a-IOK2 [ b/+ OT(b:- 1+d~;_,)]

(1 + II) 2(dbn" d ) 3 2 }+(1- II) OT di- OT ds V· bn - I - OT'" V bn - I ,

b~+1 = (1- OllGif'OT{8;/ +b/ - OT(V . bn- I +V2b~_J)l
(vi) Kink wave

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

bI3~0,

8;/ = OK{V. bn- I +V2b~_J}- bn·,

bl=O,

(2.23)

• (0 2 0 2)-10 {O 28b/ (1 + II) 0 2(dbn" 0 d Vb)bn+l = B - K K B &+(1-11) T di- Kds . n-I

O 0 2 V2b -10 3(b V db~_1 0 -Ib 3)}- K T'" n-I+a K n-I+----ciS- K n , (2.24)

(2.25)

In the above equations II is Poisson's ratio and we have introduced the operator 818s =
2(d/ds) - K. The first equation in each set is the transport or growth-decay equation and it
provides a differential equation for the variation of the jumps along the rays. These equations
are all of the same form and their solution may be found in [3] or [4]. The pairs of algebraic
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equationsfoUowing the transport equation determine the induced higher order discontinuities
and bring into play the coupling of wave types. The results obtained are a generalization of
those presented in [1].

3. STEADY STATE TIME HARMONIC WAVES

In [1] the question of steady state time harmonic plane wave solutions of the plate equations
(1.1)-(1.4) in the absence of body forces and couples was examined. For waves of this type the
possible phase velocities V = lJJk- l

, where lJJ is the frequency and k the wave number, were
found as a function of wave number. It was found that with the exception of one mode of
propagation in the case of extensional waves, that aU other wave types were dispersive. In the
limiting case of infinite frequency or wave number, all phase velocities reduced to the
corresponding speeds of propagation of discontinuities given in Section 2 of this' paper. Here
we seek harmonic wave solutions of a more general nature than those in [1], corresponding to
waves which are generally curved and which arise as a consequence of a time harmonic
disturbance applied to an arbitrary curve in the plane of the plate.

Thus we begin by assuming an asymptotic series for the displacements in the form

W = eu,,(S-t) i- Aan

a 6HilJJ)n' (3.1)

which is to represent the steady state behaviour of the plate for large frequencies. Series of this
type were introduced in [4], where S is called the phase function, to investigate steady state
time harmonic behaviour in an unbounded three-dimensional elastic non-dispersive medium.
For high frequencies the first term in the series predominates and we may regard this as an
approximation to the solution. For other frequencies the higher order terms in the series may be
viewed as corrections to the disturbance arising due to (a) the dispersive nature of the
governing equations, (b) the geometry of the wave being non-planar, and (c) the variation of
amplitude over the wave.

On substituting eqn (3.1) into eqns (1.1)-(1.4) in the absence of body forces, we arrive at a
set of differential recurrence relations which are precisely those given by eqns (2.3)-(2.6)
provided we make the identifications

(3.2)

Thus the wave classification and transport-induction equations associated with steady state time
harmonic waves as given by eqn (3.1) are in one to one correspondence with those pertaining to
the propagation of transients as given by eqn (2.1). We note that the curves of constant phase
correspond to the wave fronts in the transient problem. Moreover, the leading term in eqn (3.1)
decays as the geometrical acoustic solution and may be regarded as representing a decaying
harmonic wave whose phase velocity equals the wave front velocity.

Thus, as discussed in [5], we see from the aforementioned correspondence that the solution
wa

Ol due to a time harmonic boundary condition e-u.t corresponds to a unit pulse solution WaH

due to a boundary condition involving H(I). t The solution due to an arbitrary time dependent
boundary condition 1(1), can be obtained through the Duhamel integra1[8] as

(3.3)

4. UNCOUPLED WAVE MOTIONS

In general, for each of the classes of extensional and bending waves, coupling will occur
between the various wave types. As seen in [1] this is true even in the case of plane waves,
where coupling occurs between the longitudinal and squeeze gradient waves within the
framework of the extensional theory and between the bending and kink waves within the

tH(t) denotes the Heaviside function and is defined by H(t) = O. t < O. and H(t) = 1. t > O. It is related to the Dirac
delta function by 4(1) = Hm. where the dilferentiation is in the generalised sense[2].
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framework of the bending theory. The shear and twisting waves were uncoupled and might be
referred to as pure waves. Our objective here is to see if it is possible to expand the category of
pure plane waves. This in fact can be done by introducing suitable constrained motions, for
which the constraints are produced by application of appropriate body forces and couples.

(i) Pure tilting and twisting waves
In eqns (1.3) and (1.4) we assume W2 = wix, t), I; = ~'i + ~2j, u3 = 0, L = 0, where i, j are unit

vectors along the rectangular cartesian coordinate axes x, y. We obtain,

_ a3 a~1

p ax'
(4.1)

(4.2)

Equation (4.1). defining a pure tiltingt wave corresponds to a tilting of the plate cross
section and requires a constraining body force given by eqn (4.1h. This constraint can be
maintained by sandwiching the plate between two rigid layers. Equation (4.2) defines a pure
twisting wave and its existence requires no constraint.

(ii) Pure shear and squeeze gradient waves
In equations (1.1) and (1.2) we assume WI = WI(X, t), u=uli+u2j, ul = 0, L3 =O, F= F1i and

find that these conditions are satisfied provided

(4.3)

(4.4)

Equation (4.3\ defines a pure squeeze gradient wave and requires that the plate midsurface be
made inextensible. Equation (4.4) governs the propagation of pure shear waves and their
existence requires no constraint.

(iii) Pure kink waves
In eqns (1.3) and (1.4) we now assume W2 = W2(X, t), F 3 =- (Klp)u 3

, K ~ 0, I; = 0, L = L'i
and we obtain the governing equation of a plane kink wave as

(4.5)

In order that this wave propagate, a constraining couple L 1 must be applied in order to assure
that normals to the plane of the plate are constrained to remain normal. In the case K =I- 0, the
problem corresponds to a plate on an elastic foundation with modulus K.

We note that each of the waves defined by eqns (4.lH4.3) and (4.5) satisfy the same
differential equation and some form of constraining equation and hence it is only necessary to
deal with one of these in order to solve them all. The governing transport equationt may be
obtained by making the appropriate substitutions in the appropriate general forms of these in
Section 2, or by directly seeking a solution to eqn (4.1). in the form (3.1). An example will be
considered in the next section.

The pure shear and twisting plane waves defined by eqns (4.4) and (4.2) may be generalised.
By examining the induction equations (2.12), (2.13) and (2.21), (2.22), which correspond to these

tLogically we should call this wave a pure bending wave, but since this terminology usually has another meaning and
since the terminology tilting is descriptive. we introduce it here.

tSince there is no coupling. the induction equations make no contribution to the analysis. They are replaced by the
appropriate constraint equations. For the case K # O. the transport equation (2.23) for the kink wave does not apply. as it
was derived on the basis of C" body forces.
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two types of waves, we see that no coupling will exist provided the wave discontinuities are
constant along the wave fronts. From the form of the transport equations we see that this will
be true only if the wave curves are of constant curvature, i.e. circular and if the discontinuities
are constant on the initial wave curve. Hence we can have pure shear and twisting waves with
circular wave fronts.

5. EXAMPLES

(i) Torsional shear waves
We consider the problem of an unbounded plate having a circular cavity of radius a and

subjected to a uniform shear stress which is suddenly applied and maintained. Since the
wavefronts are circular we employ polar coordinates (r, 8) and in eqns (1.1), (1.2) we assume

u = u(r)'\, F=O, (5.1)

The appropriate boundary condition for this axi-symmetric problem is

at r = a, (5.2)

where TO is a constant. Using eqns (2.1), (2.11) and (5.2) we obtain

A _ 3ToGl {(a)1/2 (a)3/2}a2 --- 5 - - - ,
81Joa r r

A _ 15ToGl { (a)1/2 (a)3/2 (a)S/2}a3 - -~ 23 - - 6 - - - ,
1281Joa r r r

etc.

(5.3)

The solution to the transient problem is given by eqns (2.1) and (5.3) with to=(r-a)tGT and
then the shear stress is determined from eqn (5.2)]. Goodier and Jahsman[9] used Laplace
transforms to solve the above problem while Achenbach [3] treated the same problem via
discontinuity analysis but proceeded along somewhat different lines than that employed here.

Experience in the numerical evaluation of transient solutions shows that these series
solutions (2.1) converge slowly in certain cases. Turchetti and Mainardi[10] introduced Padet
approximants to accelerate the convergence of such series solutions. We have devised a simple
numerical superposition technique as an alternate means of overcoming the same difficulty and
have verified that the numerical results agree with those of [to]. This technique is based on the
fact that if any physical system is subjected to a step boundary pulse of small duration t~, the
response must decay to zero after a definite time. By choosing a suitable value of t~, it is
possible in most cases to obtain a solution that approximately decays to zero by using a few
terms in the series obtained from eqn (3.3). The boundary data is then subdivided into
equivalent step pulses of duration t~ and the response due to each of these pulses, acting at the
appropriate time, are superposed to obtain the required transient solution. For further details on
this technique and its applications we refer the reader to [11].

In order to determine the shear stress by the superposition technique we use eqns (2.1),
(3.3), (5.2) and (5.3). The results obtained without and with the incorporation of the super­
position technique are called "series" and "modified" solutions respectively. In Fig. 1 we show
our results obtained with tt = 0.1 Grita. The figure shows the excellent agreement between our
modified solution and the closed form solution of [9].

(ii) Pure tilting waves
In this example we wish to illustrate the class of constrained waves discussed in Section 4

and the relationship between the unit pulse and the corresponding time harmonic problems. We

tWe wish to thank Prof. J. D. Achenbach for calling to our attention the work on Pade approximants.
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Fig. l. Distribution of shear stress in the plate.

consider eqn (4.1)10 subjected to either one of the following boundary conditions at x = 0,

~~' =H(t). (5.4)

Setting W2 =8.", A2n = (- Wb/." and using eqns (2.17), (3.1), (3.2), (5.4), and conditions leading
to eqn (4.1) we obtain

and

S=x/GB, (5.5)

b~+l = (-1)nn!GB ±(!)2"'(-\)2 ~ (_02"'_t+n(m)(2k)(...!...)2m-", (5.6)
m-II 2 m. t.:'lt k n GB

where ii =nl2 for even n and (n + 0/2 for odd n, n ~ 0 and

(m) m!
k =(m - k)!k!'

The solution 8'" to the posed time harmonic problem is given by eqns (3.1), (5.5) and (5.6).
The solution 8H to the unit pulse problem pertaining to the boundary condition (5.4)2 can be

obtained from eqns (2.1) and (5.6) with to =xIGB• The time derivative of SH gives the Green's
function or the unit impulse solution SA.

Closed form solutions S"', SA of eqn (4.1), for the above boundary conditions can be
obtained by the method of separation of variables and Laplace transforms[l2l, respectively.
They are

8'" = iGBe(Icx-,,,t)/(lJl- b~1/2, k2=(w2- b~/Gi,

SA = Gslofb2t2- x2b2IGB~I/~,

(5.7)

(5.8)

where 10 is the Bessel function of order zero. When eqn (5.7) is expanded in inverse powers of
(iw) and eqn (5.8) is expanded as a Taylor series about t =xlGB, we obtain term by term
agreement with our time harmonic and unit impulse solutions.
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(iii) A plate bending problem
We consider a semi infinite plate which is given a transverse step velocity and has zero

bending moment along the edge x = O. The appropriate boundary conditions are

au3

at= H(t), at x = o. (5.9)

The boundary conditions (5.9) generate a first order kink wave and a second order bending
wave. Setting W2 = (81

1', u3
), A2n = (-l)n(b/v, bn

3
) and using eqns (2.17), (2.19), (2.23) and (2.24)

we can determine the discontinuities (b/, b/) and (b/, b/) pertaining to the kink (0 = OK) and
bending (0 =OB) waves, respectively. Superposition of eqns (2.1) with to =X/OK for the kink
wave and to ~ X/OB for the bending wave determines the required transient solution.

Boley and Chao in [13] considered this problem by dealing with the Timoshenko beam
equations using Laplace transforms. In our calculations we set a3 =0.912~, II =0.30 to match
their coefficient in the Timoshenko equations. In Fig. 2 we show the velocity lh obtained from
our solutions together with that obtained in [13]. The results have been nondimensionalised to
correspond to the presentation in [13]. We observe the excellent agreement obtained with our
series solution. We note that the modified superposition technique is not required here due to
the short time range considered in the problem.

I .

·8

·6

t
al ·4

C)

~
.",

·2

0- - - - - ~ Boley and Chao

lC l( Present ana lysis

',= GBt(lci =5

O~-_...L-_--'----t--"--_.l...-_~----..
2

x/..j(i -

-·2

-·4

Fig. 2. Velocity distribution in the plate.

The faster moving bending wavefront and the kink wavefront are at XI =5 and XI =2.8
respectively. We observe that the velocity is continuous on the bending wavefront while it
suffers a jump of unity (equal to the input at the boundary) in the kink wavefront.
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